Abstract

Locating microseismic source positions using seismic energy emitted from hydraulic fracturing is essential for choosing optimal fracking parameters and maximizing the fracturing effects in hydrocarbon exploitation. Interferometric crosscorrelation migration (ICCM) and zero-lag autocorrelation of time-reversal imaging (ATRI) are two important passive seismic source locating approaches that are proposed independently and seem to be substantially different. We have proven that these two methods are theoretically identical and produce very similar images. Moreover, we have developed cross-coherence that uses normalization by the spectral amplitude of each of the traces, rather than crosscorrelation or deconvolution, to improve the ICCM and ATRI methods. The adopted method enhances the spatial resolution of the source images and is particularly effective in the presence of highly variable and strong additive random noise. Synthetic and field data tests verify the equivalence of the conventional ICCM and ATRI and the equivalence of their improved versions. Compared with crosscorrelation- and deconvolution-based source locating methods, our approach shows a high-resolution property and antinoise capability in numerical tests using synthetic data with single and multiple sources, as well as field data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.