Abstract

Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei.

Highlights

  • Melioidosis is a serious, often fatal, human disease which is caused by a motile, Gram-negative bacillus namely, Burkholderia pseudomallei

  • Identification of Burkholderia pseudomallei isolates To determine whether all environmental and clinical isolates were B. pseudomallei based on whole-cell MALDI-TOF MS method, we performed pattern matching and considered obtaining scores for identification using BioTyper 2.0 software

  • The recent study from Karger et al has shown the unique biomarkers for identifying B. pseudomallei and B. mallei using the intact cell MALDI-TOF method [41]

Read more

Summary

Introduction

Melioidosis is a serious, often fatal, human disease which is caused by a motile, Gram-negative bacillus namely, Burkholderia pseudomallei. This disease is widely prevalent in tropical zones between latitudes 20uN and 20uS, which are commonly reported in Southeast Asia and Northern Australia [1]. These endemic areas have been illustrated with high mortality rates of about 40% [2]. People who are directly in contact with soil and water contaminated with B. pseudomallei are affected by this disease [1,4]. There are no vaccines available against this disease [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.