Abstract

On 17 June 2019, an Ms6.0 earthquake occurred in Changning, Sichuan, China (Changning event), which was the largest earthquake on record within 50 km of the area. It attracted great attention as the area has the largest shale gas production in China as well as significant mineral salt production. Using the Interferometric Synthetic Aperture Radar (InSAR), we extract the coseismic deformation of the Changning event and two earlier Ms > 5.0 earthquakes which occurred in the same region (16 December 2018 Ms5.7 and 3 January 2019 Ms5.3) from the Sentinel-1 and ALOS2 data. We use nonlinear and linear methods to invert the fault models of the three earthquakes based on the deformation fields. The final model shows that the Changning event was caused by a fault with left-lateral strike and thrust slip. The strike is 124.3° with a dip angle of 43.4°. The seismic moment obtained by inversion is 5.28 × 1017 Nm, corresponding to Mw 5.78. Based on the fault models, we analyze the cause of the Changning earthquake considering the local tectonic setting, Coulomb stress change, mining, and fluid injection. We consider that the event may be related to salt mining. The two earlier Ms > 5.0 earthquakes may also play an important role in advancing the Changning earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call