Abstract
Kidney cancer is a serious malignant disease, and early diagnosis along with precise segmentation are crucial for effective treatment. However, due to the scarcity of labelled medical image data, the development of the intelligent diagnosis of kidney cancer is restricted. To address this challenge, we propose a novel unsupervised domain adaptation (UDA) framework specifically designed for kidney and tumor CT image segmentation. Our framework consists of a generation phase and an adaptation phase. In the generation phase, we employ a wavelet-based style mining generator to create class-specific source-like images, facilitating domain alignment. In the adaptation phase, we introduce contrastive domain extraction and compact-aware domain consistency modules, enhancing feature-level and output-level adaptability through data augmentation techniques. Experimental results demonstrate that our method performs better in kidney and tumor segmentation tasks, exhibiting higher accuracy and generalization capability than state-of-the-art domain adaptation methods. This indicates that our approach has significant advantages in medical image segmentation for kidneys and tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.