Abstract
Antibiotic resistance risk in the aquaculture industry is increasing with the excessive consumption of antibiotics. Although various efficient technologies for the degradation of antibiotics are available, the potential risk from antibiotic resistance in treated waters is often overlooked. This study compared the risks of antibiotic resistance in anaerobic sludge fed with pretreated florfenicol (FLO) containing wastewater after four UV or vacuum UV (VUV)-driven ((V)UV-driven) pretreatments, and established the VUV/sulfite recirculating water system to validate the effect of controlling the antibiotic resistance risk in the actual aquaculture water. Metagenomics sequencing revealed that a remarkable decrease in the abundance of antibiotic resistance genes (ARGs) was observed in four different pretreated groups, and results among the four pretreated groups were sorted in descending order based on ARG abundance: UV > VUV > UV/sulfite > VUV/sulfite. The low abundance of ARGs from VUV/sulfite group was close to that in the CK group (wastewater without FLO and without any pretreatments), which was 0.41 copies/cell. From the perspective of the temporal changes in the relative abundance of floR, the abundance in VUV/sulfite group remained lower than 11.67 ± 0.73 during the cultivation time. Additionally, microbial diversity analysis found that Proteobacteria and Firmicutes were major carriers of ARGs. Two species from Burkholderiaceae and Rhodocyclales were identified as potential co-hosts to spread by the correlation analysis of the abundances between floR or intI1 and the top 50 genera. Finally, the abundances of ARGs and MGEs in the VUV/sulfite recirculating water system with actual aquaculture water were reduced by 39.15% and 46.04%, respectively, compared to that in the blank group without any pretreatment. This study verified that VUV/sulfite pretreatment system could effectively control the antibiotic resistance risk of ARGs proliferation and transfer in aquaculture water. Furthermore, the study demonstrated that the reduction of antibiotic antibacterial activity plays an important role in the source control of resistance risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.