Abstract
The loss of positional information for whole letters is one of the most important factors contributing to impaired letter and word recognition. Here we study the quantitative characteristics of flanker confusions in a crowding paradigm and test whether transient spatial attention relieves the crowding effect by reducing flanker confusions. We examined the crowding effect at three eccentricities for a range of flanker distances and attentional cue sizes. The effects of flanker distance confirm earlier findings that errors of both content and position are highest with flankers close by. However, the cue has no effect on flanker confusions and affects content information only, by enhancing target contrast sensitivity independent of cue size. Confusions with the inward, but not the outward, flanker increase linearly with eccentricity. Inward-flanker confusions dominate unlike reported asymmetries for masking. Our results are a psychophysical counterpart to separate neural coding of what and where in pattern recognition. The dependencies of cue effect and confusions on flanker distance scale with eccentricity and can be described by a generalized Bouma critical-separation rule. That rule shows a formal analogy to M scaling, from which the critical crowding distances on a cortical map can be derived as a logarithmic function. The perceptual results are visualized in a "doughnut" model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.