Abstract

Black carbon (BC) mitigation can reduce adverse environmental impacts on climate, air quality, human health, and water resource availability. To facilitate the identification of mitigation priorities, we use a state-of-the-science global chemistry-climate coupled model (AM3), with additional tagged BC tracers representing regional (East Asia, South Asia, Europe and North America) and sectoral (land transport, residential, industry) anthropogenic BC emissions to identify sources with the largest impacts on air quality, human health and glacial deposition. We find that within each tagged region, domestic emissions dominate BC surface concentrations and associated premature mortality (generally over 90%), as well as BC deposition on glaciers (∼40–95% across glaciers). BC emissions occurring within each tagged source region contribute roughly 1–2 orders of magnitude more to their domestic BC concentrations, premature mortality, and BC deposition on regional glaciers than that caused by the same quantity of BC emitted from foreign regions. At the sectoral level, the South Asian residential sector contributes ∼60% of BC associated premature mortality in South Asia and ∼40–60% of total BC deposited on southern Tibetan glaciers. Our findings imply that BC mitigation within a source region, particularly from East and South Asian residential sectors, will bring the largest reductions in BC associated air pollution, premature mortality, and glacial deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call