Abstract

A receptor modeling study was performed to identify and apportion the sources of PM10 mass in Granite City, Illinois, an area of historic TSP nonattainment. Samples of the ambient aerosol were collected using a dichotomous sampler. Each sample was analyzed by x-ray fluorescence and instrumental neutron activation analysis. To begin the study, a factor analysis was performed. Two different chemical mass balance (CMB) analyses were then made. The first CMB analysis used only source profiles available from the literature while the second included twelve source profiles developed from dust samples collected in Granite City. Both CMB analyses used 20 of the 33 analyzed elements since many of the source profiles in the literature did not include the other thirteen elements. The results from both sets of CMB analyses were grouped by the predominate wind direction at the site during the time each sample was taken to identify the direction of each source relative to the sampler. It was found that regional sources were the primary contributors to the fine fraction while the coarse fraction was composed of material from local industries. These sources were generally the ones identified during the Regional Air Pollution Study previously conducted in the area. However, the emission profiles from these sources were observed to have changed between the studies. It was also found that the use of the locally generated profiles greatly improved the results of the CMB analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.