Abstract

PurposeThe purpose of this study is to monitor suspended particulate matter (SPM), PM2.5 and source apportionment study for the identification of possible sources during the year 2018–2019 at Raipur, India.Design/methodology/approachSource apportionment study was performed using a multivariate receptor model, positive matrix factorization (PMFv5.0) with a view to identify the various possible sources of particulate matter in the area. Back-trajectory analysis was also performed using NOAA-HYSPLIT model to understand the origin and trans-boundary movement of air mass over the sampling location.FindingsDaily average SPM and PM2.5 aerosols mass concentration was found to be 377.19 ± 157.24 µg/m³ and 126.39 ± 37.77 µg/m³ respectively. SPM and PM2.5 mass concentrations showed distinct seasonal cycle; SPM – (Winter ; 377.19 ±157.25 µg/m?) > (Summer; 283.57 ±93.18 µg/m?) > (Monsoon; 33.20 ±16.32 µg/m?) and PM2.5 – (Winter; 126.39±37.77 µg/m³) > (Summer; 75.92±12.28 µg/m³). Source apportionment model (PMF) have been applied and identified five major sources contributing the pollution; steel production and industry (68%), vehicular and re-suspended road dust (10.1%), heavy oil combustion (10.1%), tire wear and brake wear/abrasion (8%) and crustal/Earth crust (3.7%). Industrial activities have been identified as major contributing factor for air quality degradation in the region.Practical implicationsChemical characterization of aerosols and identification of possible sources will be helpful in abatement of pollution and framing mitigating strategies. It will also help in standardization of global climate model.Originality/valueThe findings provide valuable results to be considered for controlling air pollution in the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call