Abstract

This paper reports the first study applying a triple-isotope approach for source apportionment of polycyclic aromatic hydrocarbons (PAHs). The (13)C/(12)C, (14)C/(12)C, and (2)H/(1)H isotope ratios of PAHs were determined in forest soils from mountainous areas of the Czech Republic, European Union. Statistical modeling applying a Bayesian Markov chain Monte Carlo (MCMC) framework to the environmental triple isotope PAH data and an end-member PAH isotope database allowed comprehensive accounting of uncertainties and quantitative constraints on the PAH sources among biomass combustion, liquid fossil fuel combustion, and coal combustion at low and high temperatures. The results suggest that PAHs in this central European region had a clear predominance of coal combustion sources (75 ± 6%; uncertainties represent 1 SD), mainly coal pyrolysis at low temperature (∼650 °C; 61 ± 8%). Combustion of liquid fossil fuels and biomass represented 16 ± 3 and 9 ± 3% of the total PAH burden (∑PAH14), respectively. Although some soils were located close to potential PAH point sources, the source distribution was within a narrow range throughout the region. These observation-based top-down constraints on sources of environmental PAHs provide a reference for both improved bottom-up emission inventories and guidance for efforts to mitigate PAH emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call