Abstract

Four receptor-oriented source apportionment models were applied to personal exposure measurements for toxic volatile organic compounds (VOCs). The measurements are from the total exposure assessment methodology studies conducted from 1980 to 1984 in New Jersey (NJ) and California (CA) and the 1987–1990 CA Indoor Exposure study. The receptor models applied are the Chemical Mass Balance model, Principal Component Analysis/Absolute Principal Component Scores, Positive Matrix Factorization, and Graphical Ratio Analysis for Composition Estimates/Source Apportionment by Factors with Explicit Restriction. Major sources of personal exposure to toxic VOCs appear to have been aromatic sources resembling automobile exhaust, gasoline vapor, or environmental tobacco smoke, and a 1,1,1-trichloroethane-dominated source that may be associated with solvent or pesticide use. Drycleaning chemicals, deodorizers or mothballs, and building materials or carpet emissions also appear to have been significant sources of exposure. Source apportionment results from the four models agreed reasonably well for the NJ data. The performance of the models was generally poorer for the CA data, and the corresponding source apportionment results were less consistent across the models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call