Abstract

Understanding the contribution of each emission source of air pollutants to ambient concentrations is important to establish effective measures for risk reduction. We have developed a source apportionment method based on an atmospheric dispersion model and multiple linear regression analysis (MLR) in conjunction with ambient concentrations simultaneously measured at points in a grid network. We used a Gaussian plume dispersion model developed by the US Environmental Protection Agency called the Industrial Source Complex model (ISC) in the method. Our method does not require emission amounts or source profiles. The method was applied to the case of benzene in the vicinity of the Keiyo Central Coastal Industrial Complex (KCCIC), one of the biggest industrial complexes in Japan. Benzene concentrations were simultaneously measured from December 2001 to July 2002 at sites in a grid network established in the KCCIC and the surrounding residential area. The method was used to estimate benzene emissions from the factories in the KCCIC and from automobiles along a section of a road, and then the annual average contribution of the KCCIC to the ambient concentrations was estimated based on the estimated emissions. The estimated contributions of the KCCIC were 65% inside the complex, 49% at 0.5-km sites, 35% at 1.5-km sites, 20% at 3.3-km sites, and 9% at a 5.6-km site. The estimated concentrations agreed well with the measured values. The estimated emissions from the factories and the road were slightly larger than those reported in the first Pollutant Release and Transfer Register (PRTR). These results support the reliability of our method. This method can be applied to other chemicals or regions to achieve reasonable source apportionments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.