Abstract

Source apportionment and risk assessment are critical for making effective pollution prevention and control policies. The study was carried out to assess source-specific ecological and human health risks associated with heavy metals in farmland soils in Yingtan City based on apportionment results of receptor models. Multivariate analysis and the APCS-MLR model consistently revealed that As, Ni, and Cr in agricultural soils may be mainly derived from natural sources, while the contents of Cu, Zn, Cd, and Pb have been significantly elevated by human activities. According to the outputs of the APCS-MLR model, Cu (34.3%), Zn (67.2%), Pb (75.1%), and Cd (67.9%) primarily originated from the industrial activities related to mineral mining and non-ferrous metal smelting processes. The source-specific ecological risk assessment indicated that industrial sources were the primary contributor to the total ecological risks, posing moderate to high risks in the southern mountainous regions. Natural origins played a significant role in the health risks due to the substantial amounts of As naturally occurring in the soils. The findings could guide the development of effective risk management and pollution control measures for agricultural soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call