Abstract
Satellite observational evidences (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, CALIPSO) have presented that the Tibetan Plateau (TP) is subject to heavy loading of dust aerosols during summer. Combining back trajectory and weather system analyses, the source and transportation of summer Tibetan dust from 2007 to 2014 were investigated. The Tibetan dust is mainly from the Taklimakan Desert and partially from the Gurbantunggut Desert and Great Indian Thar Desert. Case study indicates that the meteorological conditions together with the topography benefit the dust emission adjacent to the TP and the transport toward the plateau. When a cold advection or front developed by strong cold advection passes, dust particles are emitted into the atmosphere from the Taklimakan and Gurbantunggut deserts and then transported to the northern slope of the TP with northeasterly wind induced by the Altai and Tian Shan mountains. For the period from 2007 to 2014, the correlation coefficient of the monthly frequencies of summer dust events over the TP and cold advection passing the Taklimakan and Gurbantunggut deserts were as high as 0.68 and 0.34, respectively. Differently, although the correlation is limited, much TP dust mobilized from the Great Indian Thar Desert is associated with the passing low-pressure system activity and generally polluted by anthropogenic aerosols. The polluted dust is further transported to the southern slope of the TP by the prevailing westerly wind. Investigations on the source and transportation of summer dust over the TP provide a solid foundation of data that can be used to reveal the role of TP dust in the radiation balance, hydrological cycle, and monsoon cycle in India and East Asia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.