Abstract

Immunohistochemical studies of sympathetic ganglia have indicated that the normal rat superior cervical ganglion contains both SP-IR and CGRP-IR fibres, and CGRP- and SP-immunoreactivity coexist in some fibres. In rat sympathetic ganglia decentralization by preganglionic denervation leads to intraganglionic increase of peptidergic fibres immunoreactive (IR) for substance P (SP) and calcitonin gene-related peptide. We explored the sources of SP- and CGRP-IR fibres in normal and in chronically decentralized rat SCGs. The distribution of immunoreactivities for CGRP and SP was determined in SCGs of normal rats and of rats following preganglionic denervation followed by sensory denervation. Ganglia were studied after short-term (2-5 days) sensory denervation, and long-term (7-16 months) sympathetic denervation followed by short-term (2 days) sensory denervation. To explore for the production of SP and CGRP by intrinsic neurones within the ganglion, normal and chronically decentralized SCGs were examined following pretreatment by local in vivo application of colchicine. Normal and chronically decentralized ganglia were also injected with fluorescent tracer Fluorogold for retrograde tracing of extrinsic fibres back to their neurones of origin. The observations suggest that in normal SCG in the rat the SP-IR and CGRP-IR nerve fibres are derived via direct links from vagus and glossopharyngeal nerves and the cervical plexus, or from nerve fibres running along the cervical sympathetic trunk, and the external carotid and the internal carotid nerves. Sensory nerve inputs to the rat SCG following decentralization may contribute to the low levels of ganglionic activation observable in the autonomic failure of multiple system atrophy in man.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.