Abstract

Polarization phenomenon over any finite field Fq with size q being a power of a prime is considered. This problem is a generalization of the original proposal of channel polarization by Arikan for the binary field, as well as its extension to a prime field by Sasoglu, Telatar, and Arikan. In this paper, a necessary and sufficient condition of a matrix over a finite field Fq is shown under which any source and channel are polarized. Furthermore, the result of the speed of polarization for the binary alphabet obtained by Arikan and Telatar is generalized to arbitrary finite field. It is also shown that the asymptotic error probability of polar codes is improved by using the Reed-Solomon matrices, which can be regarded as a natural generalization of the 2 × 2 binary matrix used in the original proposal by Arikan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.