Abstract
Marine soundscapes provide the opportunity to non-invasively learn about, monitor, and conserve ecosystems. Some fishes produce sound in chorus, often in association with mating, and there is much to learn about fish choruses and the species producing them. Manually analyzing years of acoustic data is increasingly unfeasible, and is especially challenging with fish chorus, as multiple fish choruses can co-occur in time and frequency and can overlap with vessel noise and other transient sounds. This study proposes an unsupervised automated method, called SoundScape Learning (SSL), to separate fish chorus from soundscape using an integrated technique that makes use of randomized robust principal component analysis (RRPCA), unsupervised clustering, and a neural network. SSL was applied to 14 recording locations off southern and central California and was able to detect a single fish chorus of interest in 5.3 yrs of acoustically diverse soundscapes. Through application of SSL, the chorus of interest was found to be nocturnal, increased in intensity at sunset and sunrise, and was seasonally present from late Spring to late Fall. Further application of SSL will improve understanding of fish behavior, essential habitat, species distribution, and potential human and climate change impacts, and thus allow for protection of vulnerable fish species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.