Abstract

Foraging behavior in odontocetes is fundamentally tied to the use of sound. Resident-type killer whales use echolocation to locate and capture elusive salmonid prey. In this investigation, acoustic recording tags were suction cup-attached to endangered Southern Resident killer whales to describe their acoustic behavior during different phases of foraging that, along with detections of prey handling sounds (e.g., crunches) and observed predation events, allow confirmation of prey capture. Echolocation click trains were categorized based on the inter-click interval (ICI) according to hypothesized foraging function. Whales produced slow click trains (ICI >100 ms) at shallowest depths but over the largest change of depth, fast click trains (10 ms < ICI ≤100 ms) at intermediate depths, and buzz trains (ICI ≤10 ms) at deepest depths over the smallest depth change. These results align with hypotheses regarding biosonar use to search, pursue and capture prey. Males exhibited a higher probability of producing slow click trains, buzzes and prey handling sounds, indicating higher levels of prey searching and capture to support the energy requirement of their larger body size. These findings identify relevant acoustic indicators of subsurface foraging behaviors of killer whales, enabling investigations of human impacts on sound use and foraging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.