Abstract
Relational Concept Analysis (RCA) is an extension of Formal Concept Analysis (FCA) to the processing of relational datasets, i.e., made of (objects X properties) contexts and (objects X objects) relations. RCA constructs a set of fixpoint concept lattices by iteratively expanding the lattices of the initial contexts. To that end, at each iteration a scaling mechanism translates the inter-object links into relational attributes that reflect the available conceptual structures. The output of a RCA task has so far only been described operationally. We propose here an analytic characterization thereof, i.e., a completeness and consistence result connecting fixpoint extents to particular relational structures in the input data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.