Abstract

ABSTRACT Weakly collisional, magnetized plasmas characterized by anisotropic viscosity and conduction are ubiquitous in galaxies, haloes, and the intracluster medium (ICM). Cosmic rays (CRs) play an important role in these environments as well, by providing additional pressure and heating to the thermal plasma. We carry out a linear stability analysis of weakly collisional plasmas with CRs using Braginskii MHD for the thermal gas. We assume that the CRs stream at the Alfvén speed, which in a weakly collisional plasma depends on the pressure anisotropy (Δp) of the thermal plasma. We find that this Δp dependence introduces a phase shift between the CR-pressure and gas-density fluctuations. This drives a fast-growing acoustic instability: CRs offset the damping of acoustic waves by anisotropic viscosity and give rise to wave growth when the ratio of CR pressure to gas pressure is ≳αβ−1/2, where β is the ratio of thermal to magnetic pressure, and α, typically ≲1, depends on other dimensionless parameters. In high-β environments like the ICM, this condition is satisfied for small CR pressures. We speculate that the instability studied here may contribute to the scattering of high-energy CRs and to the excitation of sound waves in galaxy-halo, group and cluster plasmas, including the long-wavelength X-ray fluctuations in Chandra observations of the Perseus cluster. It may also be important in the vicinity of shocks in dilute plasmas (e.g. cluster virial shocks or galactic wind termination shocks), where the CR pressure is locally enhanced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.