Abstract

The Bering Sea shelf and Chukchi Sea shelf are believed to hold enormous oil and gas reserves which have attracted a lot of geophysical surveys. For the interpretation of acoustic geophysical survey results, sediment sound velocity is one of the main parameters. On seven sediment cores collected from the Bering Sea and Chukchi Sea during the 5th Chinese National Arctic Research Expedition, sound velocity measurements were made at 35, 50, 100, 135, 150, 174, 200, and 250 kHz using eight separate pairs of ultrasonic transducers. The measured sound velocities range from 1 425.1 m/s to 1 606.4 m/s and are dispersive with the degrees of dispersion from 2.2% to 4.0% over a frequency range of 35–250 kHz. After the sound velocity measurements, the measurements of selected geotechnical properties and the Scanning Electron Microscopic observation of microstructure were also made on the sediment cores. The results show that the seafloor sediments are composed of silty sand, sandy silt, coarse silt, clayey silt, sand-silt-clay and silty clay. Aggregate and diatom debris is found in the seafloor sediments. Through comparative analysis of microphotographs and geotechnical properties, it is assumed that the large pore spaces between aggregates and the intraparticulate porosity of diatom debris increase the porosity of the seafloor sediments, and affect other geotechnical properties. The correlation analysis of sound velocity and geotechnical properties shows that the correlation of sound velocity with porosity and wet bulk density is extreme significant, while the correlation of sound velocity with clay content, mean grain size and organic content is not significant. The regression equations between porosity, wet bulk density and sound velocity based on best-fit polynomial are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call