Abstract

The interaction between sound and ultrasound waves in a weakly compressible viscous liquid with gas bubbles is considered. Using the method of multiple scales one- and two-dimensional nonlinear interaction equations are derived. The degeneracy of the interaction is found in bubbly fluids. This phenomenon lies in the fact that the interaction coefficients vanish at a certain frequency of ultrasound. We demonstrate that the integrable Davey–Stewartson I (DSI) system of equation can describe the two-dimensional sound-ultrasound evolution. The DSI equations are remarkable by their solutions referred to as dromions. In bubbly fluids the dromion represents the localized focused ultrasound wave which can alter the direction of its motion under changes in the boundary conditions for the sound wave. The condition of singular focusing of ultrasound in bubbly fluids is obtained. By numerical analysis of the interaction models, we reveal such processes as intensification of ultrasound by sound, nonlinear instability of a sound profile, and prove the validity of the singular focusing condition. Finally, possible applications of the results are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.