Abstract

In this paper, the measurement of an aerodynamic sound source for a semi-circular cylinder in a uniform flow is described using Particle Image Velocimetry (PIV). This experimental technique is based on vortex sound theory, where the time derivative of vorticity is evaluated with the aid of two sets of standard PIV systems. The experimental results indicate that the sound source for the semi-circular cylinder is located around the shear layer near the edge of the semi-circular cylinder. The sound source intensity and the area are reduced in the semi-circular cylinder compared with those of a circular cylinder. This result indicates that the aerodynamic sound of the semi- circular cylinder is smaller than that of the circular cylinder, which supports the microphone measurement result.

Highlights

  • The aerodynamic sound from a bluff body in a stream is an important topic of interest in fluid and environmental engineering

  • It is found that the drag forces and the Sound Pressure Level (SPL) of the semi-circular cylinder are lower than the circular cylinder at certain angles of attack; this suggests that a semi-circular cylinder has superior aerodynamic/acoustic characteristics

  • The purpose of this study is to examine the sound source distribution of a semi-circular cylinder in a uniform flow using two sets of standard Particle Image Velocimetry (PIV) systems

Read more

Summary

Introduction

The aerodynamic sound from a bluff body in a stream is an important topic of interest in fluid and environmental engineering. Fujita [5] investigated the aeroacoustic characteristics of two-dimensional cylinders of various cross-sectional configurations and showed that the rounded corners in front of the bluff body are effective at improving the aeroacoustic characteristics of the bluff body. Such a body shape looks similar to the geometry of a semi-circular cylinder. It is found that the drag forces and the Sound Pressure Level (SPL) of the semi-circular cylinder are lower than the circular cylinder at certain angles of attack; this suggests that a semi-circular cylinder has superior aerodynamic/acoustic characteristics

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call