Abstract

Sound-pressure level of acoustic waves from the flow around a 1/8-reduced-scale simplified train model and pressure-fluctuation distribution of the bottom surface of the bogie were measured simultaneously by a microphone and a pressure-sensitive paint (PSP). A high-pressure-fluctuation area was observed on the upstream side on the bogie bottom surface at the peak sound frequency. The phase distribution of the peak frequency of the PSP data was observed to be uniform in the spanwise direction and delayed in the downstream direction. This result indicates that propagation speed of peak surface pressure fluctuation was 66 % of the freestream wind velocity. Thus, the measured peak sound frequency was found to be the same as the theoretical cavity peak frequency given by the Rossiter equation with that propagation speed as a vortex convection velocity. Therefore, the peak sound is concluded to be generated from acoustic feedback in the cavity, which is the gap between the upstream cavity edge and the bogie. Moreover, the difference between the measured and correlated peak sound levels of the bottom surface of the bogie, was no more than 3 dB, where the correlated sound level was calculated by using the Lighthill-Curle equation with coherent output power data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call