Abstract
Damage to the bearing elements will affect the rotation of the rotor and lead to the cessation of motor operation. Therefore, it is imperative to monitor the condition of the bearings to provide information on timely maintenance actions, improve reliability, and prevent serious damage. One of the important keys to an effective and accurate monitoring system is the placement of sensors and proper signal processing. Sound signal issued by the motor during operation capable of describing its elements’ condition. Therefore, this study aims to develop a sound sensor placement strategy appropriate for monitoring the condition of induction motor bearing components. This study was carried out on three-phase induction motors’ outer-race, inner-race, and ball-bearing sections with the signal processing method using the spectrum analysis. Furthermore, the effect of sound sensor placement on condition monitoring accuracy was determined using the One-Way Analysis of Variance (One-Way ANOVA) approach. This process tests the null hypothesis and determines whether the average of all groups is the same (H0) or different (H1). Furthermore, Tukey’s test was applied to obtain effective sound sensor placement, with voice-based condition monitoring used for effective identification. The test found that the accuracy of monitoring the bearing condition was 92.66% by placing the sound sensor at 100 cm from the motor body.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.