Abstract

The purpose of this paper is to develop a novel structural damping approach to reduce the sound pressure at a target point inside an enclosed cavity. In this approach, particle dampers filled with either metal or nonmetal particles are used. The dissipation mechanisms of such dampers are primarily related to the friction and collision of particle-wall and particle-particle contacts. In this research, each panel contribution was first analyzed to identify the panel that contributes the most to the target point. The proposed particle dampers were then attached to this panel for sound reduction. In the numerical process, a Particle Dampers Cyclic Iterative Method (PDCIM) was proposed for extracting the damping loss factor of the particle dampers to compute the sound pressure of a target point in the cavity with the particle dampers. For further comparative studies, simulation experiments are conducted for three cases: a case with the particle dampers, a case with the empty particle containers and a case with the equivalent mass. The numerical study found that the case with the particle dampers had the best sound reduction effect. Later, model tests were carried out to validate the numerical results. Experimental test results revealed that the particle dampers are remarkably effective for reducing the sound inside the enclosed cavity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.