Abstract

Sound radiation from shear deformable stiffened laminated plates with multiple compliant layers is theoretically studied. Equations of motion for the composite laminated plates are on the basis of the first-order shear deformation plate theory, and the transfer matrix method is used to describe sound transmission through compliant layers. The first and second sets of stiffeners interact with the plate through normal line forces. By using the Fourier transform and stationary phase method, the far-field sound pressure is obtained in terms of analytical expressions. Comparisons are made between the first-order shear deformation plate theory and the classical thin plate theory. Three principal conclusions are drawn in the study. (1) The transverse point force acting on the stiffeners yields lower far-field sound pressure in the middle and high frequency range. Specifically, the transverse point force exerting on the large stiffeners produces the lowest far-field sound pressure among three different reactive points at the plate, small stiffener and large stiffener. (2) The far-field sound pressure spectra are confined by an acoustic circle and remain unchanged. Lots of flexural waves in the structure cannot radiate sound into the far field. (3) The sound attenuation of stiffened plates with compliant layers is mainly caused by the sound isolation of compliant layers rather than vibrational reduction. Compliant layers can effectively reduce the radiated sound pressure in the medium and high frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call