Abstract
Theoretical, numerical, and experimental investigations are presented to predict and suppress the noise radiated from monopole point sources inside an unbaffled long enclosure including the ground. First, a mathematical model is established to calculate the acoustical fields. The modal superposition method is adopted to express the sound pressure inside the long enclosure, while the radiated noise is described by applying the Wiener-Hopf (W-H) technique. Subsequently, the interior and exterior acoustical fields are coupled using the continuity equations of sound pressure and particle velocity at the opening. After that, the theoretical model is validated through the finite element method. The formation mechanisms of sound peaks, lobes, the shadow, and illuminated zones are explained from the perspective of mode theory. Meanwhile, Helmholtz resonators (HRs) are proposed to control the dominant modal responses at the opening so that the radiated noise near the resonant frequencies is attenuated. Afterwards, the relationship between acoustical modes and radiation patterns is analyzed. The HR locations, optimized to reduce the radiated noise, are obtained. Besides, the influences of different noise sources on the radiated sound field are explored. Finally, a quasi-two-dimensional experiment is carried out to verify the proposed model and examine the feasibility of HRs in suppressing the noise radiated from an unbaffled long enclosure including the ground. This study facilitates the understanding of physics behind the sound radiation phenomenon and provides new insights into noise control strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.