Abstract

The paper deals with a community-oriented approach to the multiobjective optimisation of sustainable takeoff and landing procedures of commercial aircraft. The objective functions to be minimised are defined as the measure of area surrounding the airport where the Sound Exposure Level (SEL) is higher than 60 dBA, and the amount of fuel burned during the procedure. The first merit factor is a measure of the number of citizens affected by a potentially harmful noise level, whereas the second is proportional to the chemical emissions. The novelty of the present approach is the use of a criterion based on sound quality for the selection of the optimal procedure from the Pareto front set. The spectrum of the noise produced by each non-dominated solution is compared to a reference spectrum, the target sound. This is synthesised to meet the acceptance requirements that emerged by a campaign of psychometric tests. The rationale underlying the research is tightly linked to the expected transformation of civil aviation, with the advent of new air transport solutions in urban and suburban environments. The breakthrough nature of the emerging scenarios requires a drastic renewal of the approaches used in the management of operations, and the present work represents a contribution to this evolution. The optimisation is attained adopting a global, deterministic method, and numerical results are obtained for single- and twin-aisle aircraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call