Abstract
Sound transmission through ducts of constant cross-section with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion, where the modes are eigenfunctions of the corresponding Laplace eigenvalue problem along a duct cross-section. A natural extension for ducts with cross-section and wall impedance that are varying slowly (compared to a typical acoustic wavelength and a typical duct radius) in the axial direction is a multiple-scales solution. This has been done for the simpler problem of circular ducts with homentropic irrotational flow. In the present paper, this solution is generalized to the problem of ducts of arbitrary cross-section. It is shown that the multiple-scales problem allows an exact solution, given the cross-sectional Laplace eigensolutions. The formulation includes both hollow and annular geometries. In addition, the turning point analysis is given for a single hard-wall cut-on, cut-off transition. This appears to yield the same reflection and transmission coefficients as in the circular duct problem.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.