Abstract

In mammals, birds and amphibians the neural pathways controlling sound production descend from higher centers in the forebrain, whereas in fishes only brainstem and spinal centers have been explicitly implicated in sound production. We now report that electrical stimulation of the forebrain of the oyster toadfish (Opsanus tau) readily evokes both the agonistic grunt and the courtship boatwhistle. Boatwhistles are more realistic than ones previously evoked from lower centers. Positive stimulation sites are localized in the preoptic area (nucleus preopticus parvocellularis anterior) and the supra-commissural nucleus of the ventral telencephalon, a likely homologue of the amygdala. Both sites contain gonadal steroid-concentrating neurons and play a central role in fish courtship behavior. Evoked sounds form a continuum from knock grunts, burst grunts, transition boatwhistles to complete boatwhistles; sound pressure level (SPL), fundamental frequency and duration increase consistently within the continuum. For all sound types, SPLs exhibit the smallest variation (coefficients of variation of 2.7 to 5.7%), fundamental frequency is intermediate (5 to 13%) and durations vary most widely (18 to 60%). Boatwhistles, with the smallest variation and greatest amplitude, are likely generated by a maximal output of the CNS and sonic muscles. Grunt SPLs however, vary over a range of 26 dB for all fish and by as much as 18 dB in an individual; suggesting recruitment of variable numbers of motor units despite electrical coupling within the sonic motor nucleus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call