Abstract
Sound pressure transformation properties at the pinna of laboratory mice, Mus domesticus, were studied by measuring the sound pressure level of continuous tone at a series of frequencies at the tympanic membrane as a function of the position of a sound source under free-field stimulation conditions. Sound pressure transformation functions showed some prominent spectral notches throughout the frequency range of 10–80 kHz tested. When delivered from some angles within the ipsilateral frontal hemisphere, the sound pressure at the tympanic membrane of certain frequencies may be lower than that determined at the corresponding contralateral angles. For each sound frequency tested, there was an angle (the acoustic axis) within the ipsilateral frontal hemisphere from which the delivered sound reached a maximal pressure level at the tympanic membrane. However, sound delivered from the acoustic axis did not always generate a maximal pressure transformation. The isopressure contours determined within 2–5 dB of the maximal pressure were circumscribed, and their contained angular areas were found to decrease with increasing sound frequency. The 2 dB maximal pressure area may appear at more than one angular area for some test frequencies. Removal of the ipsilateral pinna or modification of pinna posture expanded isopressure contours irregularly and split the 2 dB maximal pressure area into several parts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.