Abstract

A system in which bubbles coalesced on formation was used to probe one mechanism by which bubbles create sound. The aim was to determine in which situations sound is produced and to predict its amplitude. A set of carefully co-ordinated high-speed video and acoustic timeseries showed that needle-formed bubbles generated loud bubble-acoustic emissions at the instant of coalescence of secondary bubbles with the primary bubble. As the air flow rate increased, the size and number of secondary bubbles increased, and the sound amplitude also increased. On coalescence, the sound pressure always rose initially. A dimensionless scaling found that the sound amplitude emitted scaled with the volume of the secondary bubble. This scaling was shown to be consistent with the sound-emission mechanism being the equalization of pressures in the coalescing bubbles. The trend in amplitude with bubble production rate was well predicted by the scaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call