Abstract
This article describes a one-dimensional, linearized, analysis of fundamental mode sound generation and propagation in rigid-walled flow ducts with axial temperature variation. An acoustic wave equation, including damping effects and volume sources, is derived and its solution (in the absence of sources) by a numerical technique and an approximate analytical method is discussed. The “forced” wave equation is then solved (the existence of an oscillating solution to the “unforced” equation being assumed) for sound generation by a side-branch volume source in an infinite duct, and the results are applied to a duct of finite length. Reasonably good agreement is obtained between measurements and predictions of the sound pressure field in a flow duct, away from the source region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.