Abstract

A pattern of sound-induced paroxysms of the eye and head and other spinal motor neuron synkinesis (Tullio's phenomenon) in human subjects always implies either a pathological contiguity of the tympano-ossicular chain and membranous labyrinth or a dehiscence of the bone overlying the superior semicircular canal. However, it has become clear in the last decade that sound-evoked vestibular stimulation is not only a sign of disease but also a physiological phenomenon. The examination of such physiologically sound-induced vestibular (saccular) responses contributes today to the clinical testing of the vestibular organ, mainly in the form of vestibular-evoked myogenic potentials. In this study it was observed that, in a group of 20 normal subjects, a 500 Hz tonal stimulus of high intensity (105 dB HL=118.5 dB SPL), applied monoaurally, elicited postural responses. Each subject was studied under 4 different conditions: (i) head facing forwards, eyes open; (ii) head facing forwards, eyes closed; (iii) head rotated , 90° to the right, eyes closed; and (iv) head rotated 90° to the left, eyes closed. Body sway, measured using a force platform, was recorded in all subjects, with eyes either open or closed. Postural responses, which were also elicited with a 250 Hz tonal stimulus, were not observed with a tone of 2000 Hz, with legs slightly flexed or with binaural stimulation. The postural sway (head facing forwards, eyes open or closed) was in a lateral direction towards the stimulated ear: with the stimulus applied to the right ear the subject had postural sway towards the right, with the stimulus applied to the left ear towards the left. When the head was rotated , 90° sideways and the stimulus was given facing forwards (i.e. head rotated contralaterally to stimulated ear) the postural sway was in a forward direction; when the head was rotated , 90° sideways and the stimulus was given facing backwards (i.e. head rotated ipsilaterally to stimulated ear) the postural sway was in a backward direction. The mean values (mm) of body sway obtained with the head facing forwards and the eyes closed were higher than those with the eyes open (21.7 and 22.8 vs 15.7 and 14.7 for the right and left ears, respectively); higher mean values were obtained with the head turned to the side contralateral to the ear stimulated and the eyes closed (29.3 and 24.8 for the right and left ears, respectively). Under this condition the body sway was mainly in a forward direction. The sound-evoked vestibulopostural reflex seems to be a useful test for exploring the saccular function and, as a click-evoked vestibulocollic reflex, can be considered a physiological Tullio phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.