Abstract
Arrangements of acoustic meta-atoms, better known as acoustic metamaterials, are commonly applied in acoustic cloaking, for the attenuation of acoustic fields or for acoustic focusing. A precise design of single meta-atoms is required for these purposes. Understanding the details of their interaction allows improvement of the collective performance of the meta-atoms as a system, for example, in sound attenuation. Destructive interference of their scattered fields, for example, can be mitigated by adjusting the coupling or tuning of individual meta-atoms. Comprehensive numerical studies of various configurations of a resonator pair show that the coupling can lead to degenerate modes at periodic distances between the resonators. We show how the resonators' separation and relative orientation influence the coupling and thereby tunes the sound attenuation. The simulation results are supported by experiments using a two-dimensional parallel-plate waveguide. It is shown that coupling parameters like distance, orientation, detuning, and radiation loss provide additional degrees of freedom for efficient acoustic meta-atom tuning to achieve unprecedented interactions with excellent sound attenuation properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.