Abstract

The absorption of bulk acoustic phonons in a two-dimensional (2D) GaAs/AlGaAs heterostructure is studied (in the clean limit) where the 2D electron-gas (2DEG), being in an odd-integer quantum-Hall state, is in fact a spin dielectric. Of the two channels of phonon absorption associated with excitation of spin waves, one, which is due to the spin-orbit (SO) coupling of electrons, involves a change of the spin state of the system and the other does not. We show that the phonon-absorption rate corresponding to the former channel (in the paper designated as the second absorption channel) is finite at zero temperature ($T$), whereas that corresponding to the latter (designated as the first channel) vanishes for $T\to 0$. The long-wavelength limit, being the special case of the first absorption channel, corresponds to sound (bulk and surface) attenuation by the 2DEG. At the same time, the ballistic phonon propagation and heat absorption are determined by both channels. The 2DEG overheat and the attendant spin-state change are found under the conditions of permanent nonequilibrium phonon pumping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.