Abstract

This article is dedicated to sound absorption properties of porous zeolite with macropores, a ceramic material fabricated by high-temperature sintering. Acoustical properties of this ceramic material are studied by two analytical models, Delany–Bazley model and Johnson–Allard model, where the latter one shows a better fit to the experimental results. Moreover increasing the thickness of samples would improve the sound absorption in the low frequency ranges. Raising the porosity could increase the highest sound absorption coefficient. The resonance frequencies of the materials with 3–5mm particles are more obvious. Comparing with glass wool, porous zeolite has a better sound absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.