Abstract

The influence of spherical bubble perforations and their grading on acoustic characteristics of a 3D printed bio-degradable material is investigated. Samples with spherical bubble perforations of different sizes are distributed either uniformly or graded across the specimen thickness. A sample having typical cylindrical perforations is also analyzed for comparative analysis. Sound absorption (SA) and sound transmission loss (STL) characteristics are estimated by the impedance tube method. The results reveal that the SA of all functionally graded (FG) perforations is higher at low frequencies. The SA and bandwidth are higher for a specimen with uniform, lower diameter bubbles at higher frequencies. The STL of FG perforations is highest among the specimens, and the difference increases significantly with frequency. The numerical and experimental results match a high degree of accuracy. FG perforations exhibited superior performance for both SA and STL. The proposed graded spherical porosity can be effectively utilized in soundproofing applications across building and transportation sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call