Abstract

This study proposes a combination for reciprocal reinforcement between warp knitting spacer fabrics and PU foams. PET/Kevlar nonwoven fabrics are made with an 80:20 ratio and an incorporation of various needle-punching speed of 100, 150, 200, 250, and 300 needles/min. Ascribing to having an optimal bursting strength, sound absorption coefficient, and limited oxygen index (LOI), the PET/Kevlar nonwoven fabric that is made by 200 needles/min are selected to be combined with a glass-fiber fabric by applying needle punch in order to form a surface layer. Next, warp knitting spacer fabrics and the nonwoven fabrics are laminated, followed by being combined with polyurethane (PU) foam that are featured with different densities of 200, 210, 220, 230, and 240 kg/m3 in order to form spacer fabric/PU foam composites with multiple functions. The composites are then tested with a drop-weight test, a compression test, a bursting strength test, a sound absorption test, and a horizontal burning test. The test results indicate that all spacer fabric/PU foam composites reach a horizontal burning level of HF1, and their sound absorption coefficients at 2500-4000 Hz also suggest a satisfactory sound absorption. In particular, the optimal residual stress and compressive strength are present when the composites contain 210 kg/m3 PU foam. Similarly, the optimal bursting strength of the composites occurs when they are composed of 230 kg/m3 PU foam. The spacer fabric/PU foam composites are proven to have high strengths, sound absorption, and fire retardant, and thus have promising potentials for use as construction materials and light weight composite planks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call