Abstract

Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.

Highlights

  • Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related deaths among men in the United States

  • The increased invasiveness following WNT3a and DKK1 incubation was consistent in all three PC cell lines examined [(1) the highly invasive osteolytic lesion-inducing PC3; (2) the highly invasive osteoblastic lesion-inducing DU-145; (3) the invasive mixed phenotype C4-2Bm prostate cancer cell lines]

  • To investigate whether the effects of DKK1 and CRIM1 on cancer cell invasion and metastasis are associated with actin filaments, we examined morphological changes in PC3 cells treated with rhDKK1 and rhSOST

Read more

Summary

Introduction

Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related deaths among men in the United States. Bone tumors cause great pain, promote fractures, and represent the main cause. SOST Inhibits Cancer Invasion of morbidity in patients suffering from advanced PC, with a 70% incidence documented by autopsies [2]. Most patients with advanced PC will experience major complications from bone metastases characterized by a mix of osteoblastic and osteolytic lesions, in which the osteoblastic component most often dominates. It has been hypothesized that the bone microenvironment is a major contributor to the PC metastatic process through the secretion of paracrine factors that attract, modulate, retain, and promote proliferation of PC cells in bone. Knowledge of the local bone microenvironment is essential in understanding potential avenues for preventing the formation of secondary bone tumors in PC patients [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call