Abstract

As ordinarily measured, the SOS repair of damaged DNA by Weigle reactivation appears to be more effective for double-stranded (ds) than for single-stranded (ss) DNA bacteriophages. A complicating feature, which is usually not considered, is the possibility of DNA-protein cross-linking of ssDNA to the viral capsid, which would conceivably be an extraneous source of nonreactivable lesions. This idea is supported in studies of phage S13 by the observation that photoreactivation more than doubles when naked ssDNA is substituted for encapsidated ssDNA as the UV target. The same effect was observed for Weigle reactivation; there was little, if any, difference in the reactivation of ssDNA and dsDNA when naked DNA was irradiated. Moreover, in a uvrA mutant, ssDNA actually had the advantage; Weigle reactivation was then more than twice as effective for ssDNA as for dsDNA. It is also shown that when a suitable measure of Weigle mutagenesis is used, there is no convincing evidence that dsDNA is mutagenized more effectively than ssDNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.