Abstract

In this paper, we aim to study nonlinear time-periodic systems using the Koopman operator, which provides a way to approximate the dynamics of a nonlinear system by a linear time-invariant system of higher order. We propose for the considered system class a specific choice of Koopman basis functions combining the Taylor and Fourier bases. This basis allows to recover all equations necessary to perform the harmonic balance method as well as the Hill analysis directly from the linear lifted dynamics. The key idea of this paper is using this lifted dynamics to formulate a new method to obtain stability information from the Hill matrix. The error-prone and computationally intense task known by sorting, which means identifying the best subset of approximate Floquet exponents from all available candidates, is circumvented in the proposed method. The Mathieu equation and an n-DOF generalization are used to exemplify these findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.