Abstract

One aerobic and two combined bio-drying processes were set up to investigate the quantitative relationships of sorting efficiency and combustion properties with organics degradation and water removal during bio-drying. Results showed that the bio-drying could enhance the sorting efficiency of municipal solid waste (MSW) up to 71% from the initial of 34%. The sorting efficiency was correlated with water content negatively (correlation coefficient, r=-0.89) and organics degradation rate positively (r=0.92). The higher heating values (HHVs) were correlated with organics degradation negatively for FP (i.e. the sum of only food and paper) (r=-0.93) but positively for the mixing waste (MW) (r=0.90), whereas the lower heating values (LHVs) were negatively correlated with water content for both FP (r=-0.71) and MW (r=-0.96). Other combustion properties depended on organics degradation performance, except for ignition performance and combustion rate. The LHVs could be greatly enhanced by the combined process with insufficient aeration during the hydrolytic stage. Compared with FP, MW had higher LHVs and ratios of volatile matter to fixed carbon. Nevertheless, FP had higher final burnout values than MW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call