Abstract

In comparative genomics, a transposition is an operation that exchanges two consecutive sequences of genes in a genome. The transposition distance, that is, the minimum number of transpositions needed to transform a genome into another, can be considered as a relevant evolutionary distance. The problem of computing this distance when genomes are represented by permutations, called the Sorting by Transpositions problem (SBT), has been introduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of a number of studies, but the computational complexity of this problem has remained undetermined for 15 years.In this paper, we answer this long-standing open question by proving that the Sorting by Transpositions problem is NP-hard. As a corollary of our result, we also prove that the following problem from [10] is NP-hard: given a permutation π, is it possible to sort π using d b (π)/3 permutations, where d b (π) is the number of breakpoints of π?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.