Abstract

Salivary glands are useful gene transfer target sites for the production of therapeutic proteins, and can secrete proteins into both saliva and the bloodstream. The mechanisms involved in this differential protein sorting are not well understood, although it is believed, at least in part, to be based on the amino acid sequence of the encoded protein. We hypothesized that a transgenic protein, human erythropoietin (hEpo), normally sorted from murine salivary glands into the bloodstream, could be redirected into saliva by fusing it with human growth hormone (hGH). After transfection, the hEpo-hGH fusion protein was expressed and glycosylated in both HEK 293 and A5 cells. When packaged in an adenovirus serotype 5 vector and delivered to murine submandibular cells in vivo via retroductal cannulation, the hEpo-hGH fusion protein was also expressed, albeit at approximately 26% of the levels of hEpo expression. Importantly, in multiple experiments with different cohorts of mice, the hEpo-hGH fusion protein was sorted more frequently into saliva, versus the bloodstream, than was the hEpo protein (p < 0.001). These studies show it is possible to redirect the secretion of a transgenic constitutive pathway protein from salivary gland cells after gene transfer in vivo, a finding that may facilitate developing novel treatments for certain upper gastrointestinal tract disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.