Abstract

A fundamental goal in systems neuroscience is to assess the individual as well as the synergistic roles of single neurons in a recorded ensemble as they relate to an observed behavior. A mandatory step to achieve this goal is to sort spikes in an extracellularly recorded mixture that belong to individual neurons through feature extraction and clustering techniques. Here, we propose an approach for approximating the often nonlinear and time varying decision boundaries between spike-derived feature classes based on a simple, yet optimal thresholding mechanism. Because thresholding is a binary classifier, we show that the complex nonlinear decision boundaries required for spike class discrimination can be achieved by adequately fusing a set of weak binary classifiers. The thresholds for these binary classifiers are adaptively estimated through a learning algorithm that maximizes the separability between the sparsely represented classes. Based on our previous work, the approach substantially reduces the computational complexity of extracting, aligning and sorting multiple single unit activity early in the data stream. Here, we also show its ability to track changes in spike features over extended periods of time, making it highly suitable for basic neuroscience studies as well as for implementation in miniaturized, fully implantable electronics in brain-machine interface applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.