Abstract
Enterococcus faecalis is a commensal and opportunistic pathogen in the gastrointestinal (GI) tract of mammals and insects. To investigate mechanisms of bacterial persistence in the gastrointestinal tract (GIT), we developed a non-destructive sampling model using Helicoverpa zea, a destructive agricultural pest, as host to study the role of bacterial sortase enzymes in mitigating persistence in the gastrointestinal tract. E. faecalis OG1RF ΔsrtA and E. faecalis OG1RF ΔsrtC, isogenic E. faecalis OG1RF sortase mutants grew similarly under planktonic growth conditions relative to a streptomycin-resistant E. faecalis OG1RFS WT in vitro but displayed impaired biofilm formation under, both, physiological and alkaline conditions. In the H. zea GI model, both mutants displayed impaired persistence relative to the WT. This represents one of the initial reports in which a non-destructive insect model has been used to characterize mechanisms of bacterial persistence in the Lepidopteran midgut and, furthermore, sheds light on new molecular mechanisms employed by diverse microorganisms to associate with invertebrate hosts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.