Abstract

In the present study, five magnetic multi-walled carbon nanotubes (MMWCNTs) with different diameters were prepared and their performance on the sorptive removal of methylene blue (MB) from water was investigated. Transmission electron microscope, scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and vibrating sample magnetometer confirm that the surface of these MMWCNTs has been decorated by Fe3O4 nanoparticles, which renders the MMWCNTs superparamagnetic. Thus, these MMWCNTs can be easily separated from water after the adsorption. During the adsorption process, pH slightly affected the removal efficiency of MB and the adsorption performed better under weak alkaline conditions. Adsorption kinetics followed the pseudo-second-order kinetic model well, and the Dubinin-Radushkevich model fitted the isotherms best. The maximum adsorption capacity for MB reached 204.2 mg/g, and the values decreased with increasing diameters of MMWCNTs due to decreasing specific surface areas. The thermodynamics parameters indicated the spontaneous and exothermic nature of the adsorption. The reusability test showed that MMWCNTs could be used for 6 cycles without significant loss of the adsorption capacity. And common ions (K+, Na+, Ca2+ and Al3+) and SDS in water did not show greatly effects on the removal efficiency of MB. Hence, MMWCNTs prepared in this study could be promising adsorbents for dyes removal from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call