Abstract

Various industries like textiles, papers, food, plastics, leather, etc are great water and organic colorant users. Hence, the resulting effluents could be an important source of environmental problems, since they may contain stable and non biodegradable contaminants, like organic dyes. The treatment of which is the main scope of the present study. Different ways of dye removal from these effluents do exist, such as flotation, reverse osmosis, chemical flocculation and adsorption etc. Adsorption is used in this work for the removal of a particular basic dye, known as Gentian violet (GV) from an aqueous solution, by means of a natural clay material. The influence of various key parameters like contact time, temperature, ionic strength, etc. on the adsorbed amount of the dye was investigated, for batch conditions. A kinetic study was also carried out, the obtained experimental results were tested against the pseudo first order and the pseudo second order equations. An analysis of the obtained equilibrium data showed that the dye adsorption is best described by the Langmuir model. The obtained results showed that temperature did enhance the Gentian violet dye retention process onto the considered bentonite whereas the obtained thermodynamic parameters indicated that the adsorption process is spontaneous and endothermic. The simultaneous presence of methylene blue, which is another colorant compound, with the Gentian violet was also considered. The clay materials showed a better affinity for the first one i e. methylene blue. In conclusion and according to the obtained results, the clay material may be recommended as an industrial adsorbent for the treatment of effluents containing Gentian violet (GV).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call